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Abstract. The nonlinear model of intramolecular excitations on a ladder lattice integrable by the
inverse scattering transform is developed. The model is closely related to the nonlinear Schrödinger
model on the same lattice with linear and nonlinear couplings between the chains explicitly taken
into account. The pair of auxiliary Lax operators is found and the set of Marchenko-type equations is
obtained. The soliton and the reduced soliton solutions of the model are explicitly presented. Even
the simplest types of solutions are proved to exhibit both the spatially constricted translational
mode typical to the traditional one-chain soliton and the interchain beating mode redistributing
the excitations between the chains in a way similar to the linear intramolecular excitations. The
possible physical applications of the model are pointed out. The nonlinear model of intramolecular
excitations on a multi-leg ladder lattice as well as its continuous counterpart are shown to be
integrable too.

1. Introduction

Since the integrability of a nonlinear Schrödinger equation in one spatial dimension was
discovered [1] the fundamental role of similar nonlinear models for various physical
applications has become generally recognized [2–5]. As a result, a number of applied and
purely theoretical problems related to rather different aspects of nonlinear Schrödinger models
have been stimulated and successfully solved. Thus, several integrable versions of nonlinear
Schr̈odinger models on discrete chains have been proposed [6–8] and quantized [9, 10]. On
the other hand, for the needs of nonlinear optics the integrable multicomponent nonlinear
Schr̈odinger model was developed [11]. Finally, the so-called classical [12] and quantum [13]
self-trapping models have also been intensively investigated. Though being nonintegrable,
the self-trapping models pretend to describe the nonlinear transport phenomena in a linearly
coupled system of chains related to low-dimensional biological objects. However, an integrable
model supporting both linear and nonlinear interchain and intrachain couplings of probability
amplitudes, to the best of our knowledge, has not been proposed until now. Here we try to fill
this gap by presenting an integrable model on a ladder lattice closely reproducing the main
features of a discrete nonlinear Schrödinger model with linear and nonlinear couplings between
the chains explicitly taken into account.

2. Basic model

In order to make all the necessary definitions in the most natural way, we start our consideration
by merely postulating the model of interest:

idqα(n)/dτ + qα(n + 1) + qα(n− 1) + tqβ(n)
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+(qα(n + 1) + qα(n− 1))(qα(n)rα(n) + qβ(n)rβ(n))

+(qα(n)qβ(n− 1)− qα(n− 1)qβ(n))rβ(n) = 0 (1)

−idrα(n)/dτ + rα(n + 1) + rα(n− 1) + trβ(n)

+(rα(n + 1) + rα(n− 1))(rα(n)qα(n) + rβ(n)qβ(n))

+(rα(n)rβ(n + 1)− rα(n + 1)rβ(n))qβ(n) = 0 (2)

and postpone its justification to the next section. Here the indicesα andβ mark the chain
numbers and run over the plus (+) and minus (−) signs in an noncoincident way (α 6= β),
whereas the numerical coordinaten determines the unit cell on the ladder lattice and is
supposed to run from minus to plus infinity. Following the terminology of nonlinear transport
phenomena we prescribe the quantitiesτ and t to be time and interchain linear coupling
constant, respectively, whileqα(n) andrα(n) are the excitation amplitudes. Then the nonlinear
terms correspond to the intrachain and interchain nonlinear couplings. (Dimensionless units
with unity value of the intrachain linear coupling constant is adopted.)

Similar to its one-chain counterpart [6], the two-chain model (1), (2) conserves the quantity∑∞
m=−∞ ln(1 +q+(n)r+(n) + q−(n)r−(n)) resembling in terms of corrected amplitudes

Q±(n) = q±(n)
√

ln(1 +q+(n)r+(n) + q−(n)r−(n))
q+(n)r+(n) + q−(n)r−(n)

(3)

R±(n) = r±(n)
√

ln(1 +q+(n)r+(n) + q−(n)r−(n))
q+(n)r+(n) + q−(n)r−(n)

(4)

the total number of excitations. We have said ‘resembling’ since, in general, the amplitudes
qα(n) andrα(n) are not permitted to be linked by the reductionrα(n) = q∗α(n), though the
one-soliton solution is shown to support the case. We do not presently know whether such a
reduction is possible for the multisoliton solutions, but at least for the well separated solitons
or any spatially smooth solutions an approximate reduction is always feasible.

3. Auxiliary linear problems

The nonlinear model under study (1), (2) is equivalent to two auxiliary linear problems

u(n + 1|z) = L(n|z)u(n|z) (5)

du(n|z)/dτ = A(n|z)u(n|z) (6)

on the four-component column vectoru(n|z) ≡ col[u1(n|z), u2(n|z), u3(n|z), u4(n|z)] with
the spectral operatorL(n|z) given by the fourth-rank matrix

L(n|z) =


z 0 iq+(n)/

√
2 iq+(n)/

√
2

0 z iq−(n)/
√

2 iq−(n)/
√

2
ir+(n)/

√
2 ir−(n)/

√
2 1/z 0

ir+(n)/
√

2 ir−(n)/
√

2 0 1/z

 (7)

and the evolution operatorA(n|z) following from the compatibility condition

[du(m|z)/dτ ]m=n+1 = du(n + 1|z)/dτ (8)

and the requirement that the power sequences in the expansions ofA(n|z) andL2(n|z), with
respect toz, should coincide. Indeed, the compatibility condition (8) applied to the auxiliary
problems (5), (6) gives rise to the Lax equation:

dL(n|z)/dτ = A(n + 1|z)L(n|z)− L(n|z)A(n|z) (9)
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sufficient to both restore the explicit matrix form of evolution operator

A11(n|z) = iz2 − it/2 + iq+(n)r+(n− 1) (10)

A12(n|z) = it + iq+(n)r−(n− 1) (11)

A21(n|z) = it + iq−(n)r+(n− 1) (12)

A22(n|z) = iz2 − it/2 + iq−(n)r−(n− 1) (13)

A13(n|z) ≡ A14(n|z) = −zq+(n)/
√

2 + z−1q+(n− 1)/
√

2 (14)

A23(n|z) ≡ A24(n|z) = −zq−(n)/
√

2 + z−1q−(n− 1)/
√

2 (15)

A31(n|z) ≡ A41(n|z) = z−1r+(n)/
√

2− zr+(n− 1)/
√

2 (16)

A32(n|z) ≡ A42(n|z) = z−1r−(n)/
√

2− zr−(n− 1)/
√

2 (17)

A33(n|z) ≡ A44(n|z) = −iz−2 + it/2− i

2
(r+(n)q+(n− 1) + r−(n)q−(n− 1)) (18)

A34(n|z) ≡ A43(n|z) = −it − i

2
(r+(n)q+(n− 1) + r−(n)q−(n− 1)) (19)

and to isolate the model of interest (1), (2). In the course of the calculations the spectral
parameterz was assumed to be time independent, as usual. The explicit indications on the
time dependences of other quantities will typically be omitted for the sake of brevity.

4. Inverse scattering scheme. Definitions and preparatory results

Now we are in a position to develop the inverse scattering technique for solving our model
(1), (2).

Restricting to the case of the potentials,q±(n) andr±(n), rapidly decreasing at infinity,
we define the left{ϕj (n|z)} and the right{ψj (n|z)} Jost bases (j = 1, 2, 3, 4) as the vector
sets satisfying the auxiliary spectral problem (5), (7) and fixed by the asymptotic conditions:

ϕij (n|z) ∼ δij (δj1 + δj2)z
n + δij (δj3 + δj4)z

−n as n→−∞ (20)

ψij (n|z) ∼ δij (δj1 + δj2)z
n + δij (δj3 + δj4)z

−n as n→ +∞. (21)

Hereϕij (n|z)andψij (n|z)are theith components of vectorsϕj (n|z)andψj (n|z), respectively.
Then the transition matrix [ajk(z)] is that transforming one basis into another

ϕk(n|z) =
4∑
j=1

ψj (n|z)ajk(z) (k = 1, 2, 3, 4). (22)

Conversely, supposing that the Jost bases are known, the following relation:

aij (z) =
4

W
k=1
{(1− δik)ψk(n|z) + δikϕj (n|z)}

4
W
k=1
{ψk(n|z)}

(23)

for the matrix elementsaij (z) can be easily obtained. Here
4

W
k=1
{vk(n|z)} stands for the

Wronskian of any four solutionsv1(n|z), v2(n|z), v3(n|z), v4(n|z) of the spectral problem
(5), (7) and is defined by the identity

4
W
k=1
{vk(n|z)} ≡ det[vik(n|z)] (24)

with vik(n|z) denoting theith component of vectorvk(n|z).
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Further, taking the Wronskian from both parts of the transforming equations (22) we come
to the normalizing condition

det[aij (z)] =
4

W
k=1
{ϕk(n|z)}

4
W
k=1
{ψk(n|z)}

=
∞∏

m=−∞
(1 +q+(m)r+(m) + q−(m)r−(m)) (25)

where the last step is assisted by the relations:

4
W
k=1
{ϕk(n|z)} =

n−1∏
m=−∞

(1 +q+(m)r+(m) + q−(m)r−(m)) (26)

4
W
k=1
{ψk(n|z)} =

∞∏
m=n

(1 +q+(m)r+(m) + q−(m)r−(m))−1 (27)

based upon the combination of the spectral problem (5), (7) and the asymptotic conditions
(20), (21).

Finally, it can be shown that two sets of vectors

{ϕ1(n|z)z−n,ϕ2(n|z)z−n,ψ3(n|z)zn,ψ4(n|z)zn} (28)

and

{ψ1(n|z)z−n,ψ2(n|z)z−n,ϕ3(n|z)zn,ϕ4(n|z)zn} (29)

are analytic outside|z| > 1 and inside|z| < 1 the unit circle, respectively, provided the
potentialsq±(n) andr±(n) abate sufficiently rapidly as|n| → ∞. These properties enable us
to seek the vectors of the right Jost basis in the form

ψj (n|z) =
∞∑
l=n
Kj (n|l)[(δj1 + δj2)z

l + (δj3 + δj4)z
−l ] (j = 1, 2, 3, 4). (30)

After being substituted into the spectral equation (5), the expansions (30) yield the relationships
between the amplitudesq±(n), r±(n) and the componentsKij (n|m) of column vectors
Kj (n|m) as follows:

q+(n) = i
√

2K13(n|n + 1)

K33(n|n) +K43(n|n) (31)

q−(n) = i
√

2K23(n|n + 1)

K33(n|n) +K43(n|n) (32)

r+(n) = i
√

2
K31(n|n + 1)K22(n|n)−K32(n|n + 1)K21(n|n)

K11(n|n)K22(n|n)−K12(n|n)K21(n|n) (33)

r−(n) = i
√

2
K32(n|n + 1)K11(n|n)−K31(n|n + 1)K12(n|n)

K11(n|n)K22(n|n)−K12(n|n)K21(n|n) . (34)

Another four relationships are completely equivalent to those presented above and we omit
them for the sake of brevity.

At this point it may appear that we could construct the inverse scattering theory by only
slightly adjusting the known one-chain results [6]. However, this is by no means the case. In
contrast to the one-chain models [1, 6], where the inverse scattering scheme is based on the
analytical properties of Jost functions side by side with the analytical properties of diagonal
transition coefficients, our situation turns out to be a more complicated one. Indeed, although
the analytical properties of Jost vectors are detectable, the analytical properties of transition
coefficientsa priori cannot be revealed and furthermore, prove to be quite unnecessary. Instead,
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the general logic of the problem leads us to the modified transition matrix [αjk(z)] given by
the combinations:

αjk(z) = (a11(z)a22(z)− a12(z)a21(z))δjk (at j = 1, 2; k = 1, 2) (35)

αjk(z) = (ajk(z)a22(z)− aj2(z)a2k(z))δk1 + (ajk(z)a11(z)− aj1(z)a1k(z))δk2

(at j = 3, 4; k = 1, 2) (36)

αjk(z) = (ajk(z)a44(z)− aj4(z)a4k(z))δk3 + (ajk(z)a33(z)− aj3(z)a3k(z))δk4

(at j = 1, 2; k = 3, 4) (37)

αjk(z) = (a33(z)a44(z)− a34(z)a43(z))δjk (at j = 3, 4; k = 3, 4). (38)

In what follows only the analytical properties of diagonal elementsα11(z) ≡ α22(z) and
α33(n) ≡ α44(n) of the modified transition matrix are required. Fortunately, they are precisely
those elements admitting to thorough treatment. Thus, the expressions

α11(z) ≡ α22(z) =
4

W
k=1
{(δ1k + δ2k)ϕk(n|z) + (δ3k + δ4k)ψk(n|z)}

4
W
k=1
{ψk(n|z)}

(39)

α33(z) ≡ α44(z) =
4

W
k=1
{(δ1k + δ2k)ψk(n|z) + (δ3k + δ4k)ϕk(n|z)}

4
W
k=1
{ψk(n|z)}

(40)

taken atn→∞ show thatα11(z) ≡ α22(z) andα33(n) ≡ α44(n) are analytic outside|z| > 1
and inside|z| < 1 the unit circle, respectively.

We complete this section by presenting the evolution equations for the elements of the
modified transition matrix:

α̇jk(z) = −i(z2 + z−2)αjk(z)− it (αj1(z)δ2k + αj2(z)δ1k) (j = 3, 4; k = 1, 2) (41)

α̇jk(z) = i(z2 + z−2)αjk(z) + it (δj2α1k(z) + δj1α2k(z)) (j = 1, 2; k = 3, 4) (42)

α̇kk(z) = 0 (k = 1, 2, 3, 4). (43)

Here the dot stands for the derivative with respect to timeτ . The evolution equations (41)–
(43) have been derived thanks to the standard observation that at everyj = 1, 2, 3, 4 the
combination ˙ϕj (n|z)−A(n|z)ϕj (n|z) satisfies to the spectral problem (5) and consequently,
is presentable by some linear superposition of the left Jost vectors.

5. Inverse scattering scheme. Marchenko equations

To proceed with the fundamental aspects of whole inverse scattering scheme it is helpful to
rearrange the interbasis link (22) into the from

Sk(n|z)αkk(z) =
4∑
j=1

ψj (n|z)αjk(z) (k = 1, 2, 3, 4) (44)

with the scattering vectorsSk(n|z) introduced the following way:

Sk(n|z)αkk(z) ≡ ϕ1(n|z)(δ1ka22(z)− a12(z)δ2k) +ϕ2(n|z)(δ2ka11(z)− a21(z)δ1k)

+ϕ3(n|z)(δ3ka44(z)− a34(z)δ4k) +ϕ4(n|z)(δ4ka33(z)− a43(z)δ3k). (45)

An appropriate analysis of scattering vectorsSk(n|z) similar to that described by Toda [14]
yields such limiting formulae

(δ1k + δ2k) lim
|z|→∞

Sk(n|z)z−n + (δ3k + δ4k) lim
|z|→0

Sk(n|z)zn = Jk (k = 1, 2, 3, 4) (46)
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and

lim
|z|→∞

a11(z) = lim
|z|→∞

a22(z) = 1 (47)

lim
|z|→∞

a12(z) = lim
|z|→∞

a21(z) = 0 (48)

lim
|z|→0

a33(z) = lim
|z|→0

a44(z) = 1 (49)

lim
|z|→0

a34(z) = lim
|z|→0

a43(z) = 0 (50)

relevant for the future contour integration and reconstruction of diagonal matrix elements
αkk(z), respectively. HereJk refers to the column vector with theith component equal toδik.

Assumingαkk(z) at |z| = 1 to be nonzero we operate on the rearranged interbasis relation
(44) with

1

2π i

∮
|z|=1

dz

αkk(z)
[(δ1k + δ2k)z

−m−1 + (δ3k + δ4k)z
m−1] . . . (51)

to find the set of equations

Kk(n|m) +
∞∑
l=n

4∑
j=1

Kj (n|l)Fjk(l +m) = Jkδnm (m > n; k = 1, 2, 3, 4) (52)

of Marchenko type [15]. Here the matrix elementsFjk(n) of the kernel operator are given by
the expressions

Fjk(n) = 1

2π i

∮
|z|=1

dz z−n−1αjk(z)

αkk(z)
+
Next∑
r=1

z−n−1
rk

αjk(zrk)

α′kk(zrk)
(at j = 3, 4; k = 1, 2)

(53)

Fjk(n) = 1

2π i

∮
|z|=1

dz zn−1αjk(z)

αkk(z)
−

Nint∑
r=1

zn−1
rk

αjk(zrk)

α′kk(zrk)
(at j = 1, 2; k = 3, 4) (54)

Fjk(n) ≡ 0 (otherwise) (55)

wherezrk stands for therth root of the equationαkk(z) = 0, α′kk(zrk) refers to the derivative
[dαkk(z)/dz]z=zrk whileNext andNint mark the total number of roots of the equationsα11(z) = 0
andα33(z) = 0, respectively. Incidentally, although the equalities (53)–(55) have been found
within an unspoken premise of simple rootszrk, the case of multiple ones can evidently be
covered by mere limiting passages in final results.

In contrast to the one-chain models the time dependences of scattering data
αjk(z)/αkk(z) as well asαjk(zrk)/α′kk(zrk) andzrk are more sophisticated though still rather
simple. Indeed, integrating the evolution equations (41)–(43) and restoring an explicit
indication on timeαjk(z) ≡ αjk(z|τ) we obtain

αjk(z|τ) = exp[−i(z2 + z−2)τ ][(αj1(z|0)δ1k + αj2(z|0)δ2k) cos(tτ )

−i(αj2(z|0)δ1k + αj1(z|0)δ2k) sin(tτ )] (at j = 3, 4; k = 1, 2) (56)

αjk(z|τ) = exp[i(z2 + z−2)τ ][(δj1α1k(z|0) + δj2α2k(z|0)) cos(tτ )

+i(δj1α2k(z|0) + δj2α1k(z|0)) sin(tτ )] (at j = 1, 2; k = 3, 4) (57)

αjk(z|τ) = αjk(z|0) (otherwise). (58)

These formulae are sufficient to extract the time dependences for any spectral data of
interest. Thus, it is clearly seen that alongside the purely translational modes evolving as
exp[±i(z2+z−2)τ ] and exp[±i(z2

rk+z
−2
rk )τ ], the transverse beating mode evolving as exp(±itτ )

becomes a distinctive feature of our model.
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6. Symmetry of Lax operators and its consequences

It is easily verified that both of the Lax operators obey to the same involuntary transformation

PL(n|z)P = L(n|z) (59)

PA(n|z)P = A(n|z) (60)

whereP ≡ P−1 and the matrix representation of operatorP is given by

Pik = δik − δi3δ3k − δi4δ4k + δi3δ4k + δi4δ3k. (61)

In doing so we must adopt

Pϕj (n|z) = ϕj (n|z) (62)

Pψj (n|z) = ψj (n|z) (63)

in order to avoid any ambiguities with the asymptotic relations (20), (21). The last two
expressions (62) and (63) enable us to both perceive the symmetry of modified transition matrix
[αjk(z)] and to establish useful links between the elements of resolving matrix [Kij (n|m)].
Namely we have:

α3k(z) = α4k(z) (at k = 1, 2) (64)

αj3(z) = αj4(z) (at j = 1, 2) (65)

K3j (n|m) = K4j (n|m) (at j = 1, 2) (66)

Ki3(n|m) = Ki4(n|m) (at i = 1, 2) (67)

K34(n|m) = K43(n|m) (68)

K33(n|m) = K44(n|m). (69)

7. Soliton solutions

For practical purposes it is worthwhile to separate the equations forK1(n|m) andK2(n|m)
from those forK3(n|m) andK4(n|m) and to reshape the Marchenko equations (52) into the
form

Ki (n|m)−
∞∑
l=n

∞∑
p=n

2∑
j=1

4∑
k=3

Kj (n|l)Fjk(l + p)Fki(p +m) = Jiδnm −
4∑
k=3

JkFki(n +m)

(m > n; i = 1, 2) (70)

Ki (n|m)−
∞∑
l=n

∞∑
p=n

4∑
j=3

2∑
k=1

Kj (n|l)Fjk(l + p)Fki(p +m) = Jiδnm −
2∑
k=1

JkFki(n +m)

(m > n; i = 3, 4). (71)

To adapt these equations for the needs of multisolitonic solutions we must equalize the
scattering data of the continuous spectrumαjk(z)/αkk(z) to zero, either on and inside
|z| 6 1 or on and outside|z| > 1 the unit circle depending on what combination of indices
(j = 3, 4; k = 1, 2) or (j = 1, 2; k = 3, 4) are chosen (the so-called unreflectional case).
Then, on the one hand the matrix elementsFjk(l+m) of the kernel operator become degenerate
(see equations (53)–(55)) and on the other the form of diagonal matrix elementsαkk(z) can be
reconstructed explicitly

α11(z) ≡ α22(z) =
N∏
s=1

z2 − exp(µs + ips)

z2 − exp(−νs + iqs)
(72)
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α33(z) ≡ α44(z) =
N∏
s=1

z−2 − exp(νs − iqs)

z−2 − exp(−µs − ips)
. (73)

Hereps and qs are real constants, whereasµs and νs are positive real constants. Except
for the restrictions imposed by the assumed simplicity of rootszrk the constantsps , qs , µs ,
νs are supposed to be arbitrary in all other respects. Finally,N marks an arbitrary but fixed
positive integer being the number of solitons in some particular multisoliton solution. Evidently
Next = Nint = 2N .

Having been presented for the unreflectional case the expressions (72) and (73) are
consistent with the analyticity conditions (α11(z) is analytical at|z| > 1 andα33(z) is analytical
at |z| < 1), the limiting conditions (lim|z|→∞ α11(z) = 1 and lim|z|→0 α33(z) = 1) as well as
with the normalizing condition (25) and the parity conditionsαkk(−z) = αkk(z). Though
not mentioned earlier, the conditionsαkk(−z) = αkk(z) can easily be proved, at least for
rapidly abating potentialsq±(n) andr±(n) close to those on the compact support. We observe,
in passing, that all other nonzero elements of the modified transition matrix happen to be
odd functions of the spectral parameterαjk(−z) = −αjk(z) (j = 3, 4; k = 1, 2 and
j = 1, 2; k = 3, 4).

Manipulating the Marchenko equations (70), (71) in a way standard to integral equations
with degenerate kernel [16] and exploring all parity conditions of the modified transition matrix
just referred to, we find:

Ki (n|m) =
N∑
s ′=1

4∑
j=3

X
s ′q
j (n) sin2

(πm
2

) N∑
s ′′=1

2∑
k=1

exp(−ηs ′′rm)Cs ′qs ′′r (n)bs
′q
jk b

s ′′r
ki

+
N∑
s ′=1

4∑
j=3

Y
s ′q
j (n) cos2

(πm
2

)
×

N∑
s ′′=1

2∑
k=1

exp(−ηs ′′rm)Ss ′qs ′′r (n)bs
′q
jk b

s ′′r
ki

+Jiδnm −
[
sin2

(πn
2

)
cos2

(πm
2

)
+ cos2

(πn
2

)
sin2

(πm
2

)]
×

N∑
s ′=1

exp[−ηs ′r (n +m)]
2∑
k=1

Jkb
s ′r
ki (m > n; i = 3, 4) (74)

Ki (n|m) =
N∑
s ′=1

2∑
j=1

Xs ′r
j (n) sin2

(πm
2

) N∑
s ′′=1

4∑
k=3

exp(−ηs ′′qm)Cs ′rs ′′q(n)bs ′rjk bs
′′q
ki

+
N∑
s ′=1

2∑
j=1

Y s ′r
j (n) cos2

(πm
2

)
×

N∑
s ′′=1

4∑
k=3

exp(−ηs ′′qm)Ss ′rs ′′q(n)bs ′rjk bs
′′q
ki

+Jiδnm −
[
sin2

(πn
2

)
cos2

(πm
2

)
+ cos2

(πn
2

)
sin2

(πm
2

)]
×

N∑
s ′=1

exp[−ηs ′q(n +m)]
4∑
k=3

Jkb
s ′q
ki (m > n; i = 1, 2) (75)

where the four-component column vectorsXsq

i (n), Y
sq

i (n) with i = 3, 4 andXsr
i (n), Y

sr
i (n)
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with i = 1, 2 are determined from the following four sets of linear algebraic equations:

X
sq

i (n)−
N∑
s ′=1

4∑
j=3

X
s ′q
j (n)

N∑
s ′′=1

2∑
k=1

Cs ′qs ′′r (n)Ss ′′rsq(n)b
s ′q
jk b

s ′′r
ki

= sin2
(πn

2

)
exp(−ηsqn)Ji − cos2

(πn
2

)
×

N∑
s ′=1

exp(−ηs ′rn)Ss ′rsq(n)
2∑
k=1

Jkb
s ′r
ki (i = 3, 4) (76)

Y
sq

i (n)−
N∑
s ′=1

4∑
j=3

Y
s ′q
j (n)

N∑
s ′′=1

2∑
k=1

Ss ′qs ′′r (n)Cs ′′rsq(n)b
s ′q
jk b

s ′′r
ki

= cos2
(πn

2

)
exp(−ηsqn)Ji − sin2

(πn
2

)
×

N∑
s ′=1

exp(−ηs ′rn)Cs ′rsq(n)
2∑
k=1

Jkb
s ′r
ki (i = 3, 4) (77)

Xsr
i (n)−

N∑
s ′=1

2∑
j=1

Xs ′r
j (n)

N∑
s ′′=1

4∑
k=3

Cs ′rs ′′q(n)Ss ′′qsr (n)b
s ′r
jk b

s ′′q
ki

= sin2
(πn

2

)
exp(−ηsrn)Ji − cos2

(πn
2

)
×

N∑
s ′=1

exp(−ηs ′qn)Ss ′qsr (n)
4∑
k=3

Jkb
s ′q
ki (i = 1, 2) (78)

Y sr
i (n)−

N∑
s ′=1

2∑
j=1

Y s ′r
j (n)

N∑
s ′′=1

4∑
k=3

Ss ′rs ′′q(n)Cs ′′qsr (n)b
s ′r
jk b

s ′′q
ki

= cos2
(πn

2

)
exp(−ηsrn)Ji − sin2

(πn
2

)
×

N∑
s ′=1

exp(−ηs ′qn)Cs ′qsr (n)
4∑
k=3

Jkb
s ′q
ki (i = 1, 2) (79)

respectively. Here the notations

ηsq = 1
2(µs + ips) (80)

ηsr = 1
2(νs − iqs) (81)

Cs ′qs ′′r (n) ≡ Cs ′′rs ′q(n) = 2
[
exp(ηs ′q + ηs ′′r ) cos2

(πn
2

)
+ sin2

(πn
2

)] exp[−(ηs ′q + ηs ′′r )n]

sh(ηs ′q + ηs ′′r )
(82)

Ss ′qs ′′r (n) ≡ Ss ′′rs ′q(n) = 2
[
exp(ηs ′q + ηs ′′r ) sin2

(πn
2

)
+ cos2

(πn
2

)] exp[−(ηs ′q + ηs ′′r )n]

sh(ηs ′q + ηs ′′r )
(83)

b
sq

jk = 2
αjk(exp(ηsq))

α′kk(exp(ηsq)
exp(−ηsq) (j = 3, 4; k = 1, 2) (84)

bsrjk = −2
αjk(exp(−ηsr))
α′kk(exp(−ηsr) exp(ηsr ) (j = 1, 2; k = 3, 4) (85)

are adopted.
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In principle, the formulae (74)–(79) supplemented by relations (31)–(34) between
Kij (n|m) andq±(n), r±(n) unravel the problem of any multisolitonic solution of our nonlinear
model (1), (2).

For example, the amplitudes of one soliton solution (i.e. soliton solution withN = 1) are
found to be{
q+(n)

q−(n)

}
= sh

(
µ + ν + ip − iq

2

)
· sech

[
µ + ν + ip − iq

2
(n− x − iy) + iτ ch(µ + ip)− iτ ch(ν − iq)

]
· exp

[
µ− ν + ip + iq

2
n + iτ ch(µ + ip) + iτ ch(ν − iq)

]
·
[
eγ++iθ+ cos(θ + iγ )

{
cos(tτ )
i sin(tτ )

}
+ e−γ−−iθ− sin(θ + iγ )

{
i sin(tτ )
cos(tτ )

}]
(86){

r+(n)

r−(n)

}
= sh

(
ν +µ− iq + ip

2

)
· sech

[
ν +µ− iq + ip

2
(n− x − iy)− iτ ch(ν − iq) + iτ ch(µ + ip)

]
· exp

[
ν − µ− iq − ip

2
n− iτ ch(ν − iq)− iτ ch(µ + ip)

]
·
[
e−γ+−iθ+ cos(θ + iγ )

{
cos(tτ )
−i sin(tτ )

}
+ eγ−+iθ− sin(θ + iγ )

{−i sin(tτ )
cos(tτ )

}]
.

(87)

Here µ, ν, p, q, x, y as well as γ±, θ± and γ , θ are real integration
parameters linked to the scattering data of discrete spectrumαjk

(
exp(ηsq)

)
/α′kk

(
exp(ηsq)

)
,

αjk (exp(−ηsr)) /α′kk (exp(−ηsr)) and exp(ηsq), exp(−ηsr) at τ = 0 by some one-to-one
relations.

It is clearly seen that the one-soliton amplitudes (86), (87) cancel the nonlinear terms
(qα(n)qβ(n−1)−qα(n−1)qβ(n))rβ(n) and(rα(n)rβ(n+1)−rα(n+1)rβ(n))qβ(n) identically,
and actually convert the initial model (1), (2) into that where the reductionrα(n) = q∗α(n) is
justified (the last steprα(n) = q∗α(n) requires the coupling parametert to be real). Evidently
such a reduction simplifies the original one-soliton solution (86), (87) and yields{
q+(n)

q−(n)

}
= shµ · sech[µ(n− x)− 2τ shµ sinp] exp(ipn− 2iτ chµ cosp)

·
[{

cos(tτ )
i sin(tτ )

}
eiθ+ cosθ +

{
i sin(tτ )
cos(tτ )

}
e−iθ− sinθ

]
(88)

r±(n) = q∗±(n). (89)

However, despite the reduction the parametrization of this solution,{µ, θ, p, x, θ+, θ−} remains
much richer than that related to one-chain models [1, 6, 8].

The expressions (86), (87) and (88), (89) allow us to conclude that the two-chain model
(1), (2) correctly describes both the spatially constricted translational mode typical to the
traditional soliton and the interchain beating mode redistributing the excitations between the
chains. In the case of the reduced one-soliton solution (88), (89) the beating amplitude is

equal to
√

cos2 2θ + sin2 2θ sin2(θ+ + θ−) and can be varied from zero to unity. Conversely,
the beating frequencyt/π has a fundamental physical origin and is determined exclusively by
the interchain coupling constant regardless of any particular solution with realt .
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8. Concluding remarks

In this paper we have shown how to include the main physical features of the nonlinear
Schr̈odinger model on a ladder lattice in the inverse scattering scheme and to obtain the
corresponding integrable model. Similar to its nonintegrable prototypes our model is expected
to be useful for the analysis of nonlinear transport phenomena in low-dimensional biological
and condensed matter systems as well as for the needs of nonlinear optics. Throughout
the paper we have covered practically all the basic aspects of the model except for the
problem of conservation laws. Being infinite in number, the sequence of these laws follows
from the expansions lnα11(z) and lnα33(z) with respect to inverse and direct powers of
spectral parameter, respectively. We are planning to treat the conserving quantities in future
investigations in as much as at least the first few of them should be responsible for the
Hamiltonian structure of our model.

At this point in time the first version of our paper is complete. However, very recently
(more precisely one week before and three days after submission) two papers [17, 18] dealing
with the integrable models

iq̇α(n) + (qα(n + 1) + qα(n− 1))

(
1 +

M∑
β=1

qβ(n)q
∗
β(n)

)
= 0 α = 1, 2, 3, . . . ,M

(90)

and

iq̇α(n) + qα(n + 1) + qα(n− 1) +
M∑
β=1

(qα(n + 1)rβ(n)qβ(n) + qα(n)rβ(n)qβ(n− 1)) = 0

(91)

−i ṙα(n) + rα(n + 1) + rα(n− 1) +
M∑
β=1

(rβ(n + 1)qβ(n)rα(n) + rβ(n)qβ(n)rα(n− 1)) = 0

(92)

α = 1, 2, 3, . . . ,M

have appeared in the literature. Although being multicomponent ones, these models do not
contain the terms responsible for the interchain linear couplings and at first sight are merely
successfully handled discretizations of the well known multicomponent nonlinear Schrödinger
equation [4, 11]

i∂Qα/∂τ + ∂2Qα/∂x2 + 2
M∑
β=1

QβRβQα = 0 α = 1, 2, 3, . . . ,M (93)

with Rβ = ±Q∗β .
Nevertheless, the model (90) was shown to exhibit a novel property referred to as periodic

oscillations of the soliton shape [17] or, briefly, soliton-shape oscillations. The question arises
whether this purely nonlinear effect is similar to the effect of interchain beating supported, as
we know, exclusively by the interchain linear coupling. To reply, we observe that the one-
soliton solutionqα(n)sol (α = 1, 2, 3, . . . ,M) of (90) suggested in [17] is nothing but the set
of an appropriately chosen (

∑M
β=1 aβbβ = 0) linear combinations:

qα(n)sol = aαq(n)sol + b∗α(−1)nq∗(n)sol√∑M
β=1(|aβ |2 + |bβ |2)

(94)
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of one-soliton

q(n)sol = shµ sech[µ(n− x)− 2τ shµ sinp] exp[ipn− 2iτ chµ cosp] (95)

and staggered one-soliton(−1)nq∗(n)sol solutions of the purely one-chain model

iq̇(n) + (q(n + 1) + q(n− 1))(1 +q∗(n)q(n)) = 0. (96)

As a result, the amplitudes of the soliton-shape oscillations 2(−1)n|aαbα| also become
staggered, mainly giving rise to the redistribution of soliton density within each particular chain
rather than to the interchain beating. Of course, the soliton-shape oscillations are possible only
in multi-component nonlinear models favourable to the staggering-type solutions, particularly
in discrete ones with the symmetryrα(n) = ±q∗α(n) and a very special type of nonlinearity
(e.g. in (90)). Summarizing, we see that the effect of interchain beating actually has nothing
to do with that of soliton-shape oscillations.

Further, under the mutual constraintst = 0 andM = 2 the models (1), (2) and (91), (92)
cast into each other. But despite the expected coincidence, our one-soliton solution (86), (87)
with t = 0 turned out to be somewhat richer than that obtained in [18] withM = 2 by the
Hirota method.

It is interesting to note that alongside with the thoroughly treated multicomponent model
(90), [17] has presented a more general integrable model referred to as the semi-discrete
matrix nonlinear Schr̈odinger equations. But despite their affected generality these equations
can never be reduced to our model (1), (2) in view of the rather tough restrictions imposed
on the submatrices involved. In particular, the submatricesF1, F2 andQn, Rn from [17]
are assumed to be nonsingular (this fact is actually declared by the equations (2.5), (2.14),
(2.16) and (2.19) from [17]). In contrast, we relinquished similar assumptions from the very
beginning, after revealing that they simply kill the whole idea of interchain linear coupling. In
the meantime, the general model naturally casting into (1), (2) reads as follows:

iq̇α(n) + qα(n + 1) + qα(n− 1) +
M∑
β=1

�αβqβ(n)

+
M∑
β=1

(qα(n + 1)rβ(n)qβ(n) + qα(n)rβ(n)qβ(n− 1)) = 0 (97)

−i ṙα(n) + rα(n + 1) + rα(n− 1) +
M∑
β=1

rβ(n)�βα

+
M∑
β=1

(rβ(n + 1)qβ(n)rα(n) + rβ(n)qβ(n)rα(n− 1)) = 0 (98)

α = 1, 2, 3, . . . ,M

where the submatrix [�αβ ] is supposed to be an arbitraryM ×M matrix independent of the
coordinaten. The model (97), (98) proves to be integrable in as much as it permits the Lax-
type representation (9) with the auxiliary linear operatorsL(n|z) andA(n|z) given by the
block-matrices

L(n|z) =
(

zI F (n)E

EG(n) z−1I

)
(99)

and

A(n|z) =
( −−
A (n|z) −+

A (n|z)
+−
A (n|z) ++

A (n|z)

)
(100)
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with

−−
A (n|z) = iz2I − iF(n)EEG(n− 1) + i�− i(σ + χM)I (101)
−+
A (n|z) = izF (n)E − iz−1F(n− 1)E (102)
+−
A (n|z) = izEG(n− 1)− iz−1EG(n) (103)
++
A (n|z) = −iz−2I + iEG(n)F (n− 1)E − iσI − iχE. (104)

Here the quantitiesI, E,� andF(n),G(n) stand forM ×M submatrices defined by

I ≡ [Iαβ ] = [δαβ ] (105)

E ≡ [Eαβ ] = [1] (106)

� ≡ [�αβ ] (107)

F(n) ≡ [Fαβ(n)] = [iqα(n)δαβ ]/
√
M (108)

G(n) ≡ [Gαβ(n)] = [iδαβrβ(n)]/
√
M (109)

while σ andχ mark arbitraryc-numbers independent of the coordinaten. We call the model
(97), (98) the nonlinear model of intramolecular excitations on a multi-leg ladder lattice. It
is easily checked that atM > 2 the submatricesF(n)E andEG(n) involved in the spectral
operator (99) are essentially singular ones.

Incidentally, the continuous equivalent of multi-leg ladder model (97), (98)

i∂Qα/∂τ + ∂2Qα/∂x2 +
M∑
β=1

�αβQβ + 2
M∑
β=1

QαRβQβ = 0 (110)

−i∂Rα/∂τ + ∂2Rα/∂x2 +
M∑
β=1

Rβ�βα + 2
M∑
β=1

RβQβRα = 0 (111)

α = 1, 2, 3, . . . ,M

also happens to be integrable. But in contrast to its discrete counterpart (97), (98) it enables
one to obtain the main physically important conserved quantities:

N =
∫ ∞
−∞

dx
M∑
α=1

RαQα (112)

P = − i

2

∫ ∞
−∞

dx
M∑
α=1

[
Rα

∂Qα
∂x
− ∂Rα

∂x
Qα
]

(113)

H =
∫ ∞
−∞

dx

[ M∑
α=1

∂Rα
∂x

∂Qα
∂x
−

M∑
α=1

M∑
β=1

Rα�αβQβ −
( M∑
γ=1

RγQγ
)2]

(114)

in a routine way known from standard quantum mechanics. It is clearly seen that the quantity
H explicitly contains the linear coupling coefficients�αβ . Nothing similar can be obtained
standing on the general positions of Wadati’s team [17, 19], which once again confirms the
principal distinctions between our models (1), (2); (97), (98); (110), (111) and the semi-discrete
matrix nonlinear Schr̈odinger equations [17]. As a matter of fact, the set of conservation laws
obtained for the semi-discrete nonlinear Schrödinger equations [17] becomes invalid as applied
to our models (1), (2) and (97), (98) and we ought to derive the new one under absolutely
different assumptions.
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In conclusion, we prove the integrability of continuous model (110), (111) starting with
the auxiliary linear operatorsL(x|λ) andA(x|λ) given by

L(x|λ) =
(

iλI F(x)E
EG(x) −iλI

)
(115)

A(x|λ) =
( −−
A (x|λ) −+

A (x|λ)
+−
A (x|λ) ++

A (x|λ)

)
. (116)

Here
−−
A (x|λ) = −2iλ2I − iF(x)EEG(x) + i�− i(σ + χM)I (117)
−+
A (x|λ) = −2λF(x)E + i∂F(x)/∂xE (118)
+−
A (x|λ) = −2λEG(x)− iE∂G(x)/∂x (119)
++
A (x|λ) = 2iλ2I + iEG(x)F(x)E − iσI − iχE (120)

where the quantitiesI, E,� andF(x), G(x) are assumed to beM ×M submatrices defined
by the expressions (105)–(107) and

F(x) ≡ [Fαβ(x)] = [iQα(x)δαβ ]/
√
M (121)

G(x) ≡ [Gαβ(x)] = [iδαβRβ(x)]/
√
M (122)

respectively, whileλ stands for the time-independent spectral parameter. The coordinate
independentc-numbers,σ andχ , can always be equalized to zero without loss of generality.
The model (110), (111) follows from the zero-curvature condition

∂L(x|λ)/∂τ = ∂A(x|λ)/∂x +A(x|λ)L(x|λ)− L(x|λ)A(x|λ) (123)

thereby indicating its integrability.
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